
Lecture 13 : Lindeberg’s Theorem and the Helly-Bray Selection Principle

STAT205 Lecturer: Jim Pitman Scribe: Timothy Wu <tcb6402@berkeley.edu>

This set of notes is a revision of the work of Lawrence Christopher Evans and David
S. Rosenberg.

Abstract

In this lecture we begin with a review of Lindeberg’s Theorem and its appli-
cations. We then build up the tools used in the Helly-Bray Selection Principle
and we finish with its proof. The lecture provided here corresponds with sec-
tions 2.2 and 2.4 of [1].

13.1 Triangular Arrays

Roughly speaking, a sum of many small independent random variables will be nearly
normally distributed. To formulate a limit theorem of this kind, we must consider
sums of more and more smaller and smaller random variables. Therefore, throughout
this section we shall study the sequence of sums

Si =
∑

j

Xij

obtained by summing the rows of a triangular array of random variables

X11, X12, . . . , X1n1

X21, X22, . . . . . . , X2n2

X31, X32, . . . . . . . . . , X3n3

...
...

...
...

.

It will be assumed throughout that triangular arrays satisfy 3 Triangular Array Con-
ditions1:

1. for each i, the ni random variables Xi1, Xi2, . . . , Xini
in the ith row are mutually

independent;

1This is not standard terminology, but is used here as a simple referent for these conditions.
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2. E(Xij) = 0 for all i, j; and

3.
∑

j EX2
ij = 1 for all i.

Here the row index i should always be taken to range over 1, 2, 3, . . ., while the column
index j ranges from 1 to ni. It is not assumed that the random variables in each row
are identically distributed, and it is not assumed that different rows are independent.
(Different rows could even be defined on different probability spaces.) It will usually
be the case that n1 < n2 < · · · , whence the term triangular. It is not necessary to
assume this however.

13.2 Lindeberg’s Theorem

We will write L(X) to denote the law or distribution of a random variable X. N (0, σ2)
is the normal distribution with mean 0 and variance σ2. Recall:

Theorem 13.1 (Lindeberg’s Theorem) Suppose that in addition to the Triangu-
lar Array Conditions, the triangular array satisfies Lindeberg’s Condition:

∀ε > 0, lim
i→∞

ni
∑

j=1

E[X2
ij1 (|Xij| > ε)] = 0 (13.1)

Then, as i → ∞, L(Si) → N (0, 1).

13.2.1 Applications

Let Sn = X1 + X2 + · · · + Xn where X1, X2, . . . is a sequence of independent, pos-
sibly non-identically distributed r.v.s, each with mean 0. Let VarX = σ2

j and
s2
n =

∑n

j=1 σ2
j . We want to know when L(Si/si) → N (0, 1). To this end, we check

Lindeberg’s condition for the triangular array Xij = Xj/si, j = 1, 2, . . . , i. Then Si

in the Lindeberg CLT is replaced by Si/si, and the Lindeberg condition becomes

lim
n→∞

n
∑

j=1

E

[

X2
j

s2
n

1

(
∣

∣

∣

∣

Xj

sn

∣

∣

∣

∣

> ε

)]

= 0, for all ε > 0, (13.2)

i.e. lim
n→∞

1

s2
n

n
∑

j=1

E
[

X2
j 1 (|Xj| > εsn)

]

= 0, for all ε > 0. (13.3)

Examples where the Lindeberg condition holds:
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1. The i.i.d. case where s2
n = nσ2:

1

nσ2

n
∑

j=1

E[X2
j 1

(

|Xj| > εσ
√

n
)

] =
1

σ2
E[X2

11
(

|X1| > εσ
√

n
)

],

and since EX2
1 < ∞, we can use the dominated convergence theorem to conclude

that the Lindeberg condition holds.

2. Lyapounov’s condition

lim
n→∞

1

s2+δ
n

n
∑

j=1

E|Xj|2+δ = 0 for some δ > 0

implies Lindeberg’s condition. The proof of this is given (essentially) in the
previous lecture.

3. If X1, X2, . . . are uniformly bounded: |Xj| ≤ M for all j, and sn ↑ ∞. Fix ε > 0.
For n so large that sn ≥ M/ε, we have

1 (|Xj| > εsn) = 1 (|Xj| > M) = 0 for all j.

Hence the Lindeberg condition is satisfied.

13.3 Extended Distribution Functions

Extended distribution functions are an extension of distribution functions to
the case where we allow mass to exist at ±∞. In the case of a cumulative
distribution function F , we require that limx→∞ F (x) = 1 and limx→−∞ F (x) =
0. For the extended distribution function we relax this condition. This is
convenient, as the limit of distribution functions is often not a proper cumulative
distribution function.

Example 13.2 Let Fn = δn, the delta measure at n. Then as n → ∞, Fn ⇒ 0.
However, 0 is not a cumulative distribution function since limx→∞ 0 6= 1

So to deal with the case of mass at ±∞, we define the extended distribution
function.

Definition 13.3 (Extended Distribution Function) A function F : < →
[0, 1] which is right continuous and nondecreasing is called an extended distri-
bution function. We define F (−∞) := limx↓−∞ F (x) and F (∞) := limx↑∞ F (x)
and thus there is a bijection between extended distribution functions and prob-
ability measures on [−∞,∞] by the relation µ[−∞, x] = F (x) for all x < ∞,
and µ[x,∞] = 1 − F (x).
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Note here that if Y has extended distribution function F , F (−∞) = P (Y =
−∞) but F (∞) = 1−P (Y = ∞). Also note that for any e.d.f. F , if F (∞) = 1
and F (−∞) = 0, F is simply a c.d.f. We see now that although the function
F ≡ 0 that we encountered above is not a c.d.f., it is an e.d.f.(extended distri-
bution function) with F (∞) = 0. Next, we look at theorems dealing with the
limits of sequences of cumulative distribution functions and extended distribu-
tion functions.

13.4 The Helly-Bray Selection Principle

Theorem 13.4 (Helly-Bray Selection Principle) Every sequence of extended
distribution functions Fn has a subsequence Fn(k) such that Fn(k) → F (x) for all
continuity points x of F for some extended distribution function F .

Before we prove the main theorem, we introduce the following Lemma:

Lemma 13.5 Let D ⊂ R be dense. Let Fn be a sequence of e.d.f.s such that
limn→∞ Fn(d) = F∞(d), ∀ d ∈ D. Then, Fn ⇒ F? where F?(x) := infx<d∈D F∞(d).

The proof of this lemma is left as an exercise to the reader. We now proceed to
the proof of the Helly-Bray selection principle.

Proof: Let Fn be a sequence of e.d.f.s, and let D = {d1, d2, . . .} be any count-
able, dense set. Using Cantor’s diagonal argument, we can find a subsequence
n(k) such that Fn(k)(d) → F (d) for all d ∈ D. We then simply apply the
previous lemma and see that Fn(k) ⇒ F?.

The Helly-Bray selection principle as stated above begs the question: under
what conditions can we find a subsequence converging to a cumulative distribu-
tion function? To answer this we first introduce the notion of tightness:

Definition 13.6 (Tightness) A collection B of proper distributions (c.d.f.s)
F is called tight if limx→∞ supF∈B F (−x, x)c = 0. In other words, if F (−x, x)c →
0 as x → ∞ uniformly over F ∈ B.

Combining the property of tightness with the Helly-Bray selection principle, we
get:

Theorem 13.7 (Variation of the Helly-Bray Selection Principle) Every
tight sequence of proper distribution functions Fn has a subsequence Fn(k), such
that Fn(k) ⇒ F where F is a proper distribution function.

The proof of this theorem is immediate from the Helly-Bray selection principle
and the definition of tightness.
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13.5 Application of Helly-Bray

We use the Helly-Bray selection principle for the following important applica-
tion:

Definition 13.8 A collection D of bounded, continuous functions f : R → R is
called a determining class if every probability measure P on R is characterized by
the integrals

∫

f dP for f ∈ D. (i.e.
∫

f dP =
∫

f dQ, ∀ f ∈ D ⇔ P (−∞, x] =
Q(−∞, x], ∀ x ∈ R).

Theorem 13.9 Let D be a determining class and let Fn be a sequence of prob-
ability measures on the line. If

∫

f dFn converges to some limit for all f ∈ D
and (Fn) is tight, then Fn ⇒ F , where F is the unique distribution determined
by

∫

f dF = limn→∞

∫

f dFn for all f ∈ D.

Before we prove this theorem let us recall a lemma:

Lemma 13.10 Let xn be a sequence in a metric space S. ∃ x ∈ S such that
xn → x ⇔ ∀ subsequence xn(k) there is a further subsequence xn(k(l)) such that
xn(k(l)) converges to x.

The proof of this lemma is an easy exercise using proof by contradiction. Now
we prove the theorem:

Proof: For any subsequence Fn(k) tightness and the Helly-Bray selection prin-
ciple tells us that there is a further subsequence Fn(k(l)) such that Fn(k(l)) ⇒ G
for some distribution function G. Fn(k(l)) ⇒ G in turn implies that

∫

f dG =
liml→∞

∫

f dFn(k(l)) for all bounded, countinuous f . So in particular the equality
holds for all f ∈ D.

But by our assumption, we know that liml→∞

∫

f dFn(k(l)) =
∫

f dF . These
two statements together imply that

∫

f dG =
∫

f dF for all f ∈ D. But D is a
determining class and so

∫

f dG =
∫

f dF for all bounded, countinuous f . Thus
we have that

∫

f dF = liml→∞

∫

f dFn(k(l)) for all bounded, countinuous f . In
other words, we know that Fn(k(l)) ⇒ F .

Now we recall that weak convergence is equivalent to convergence in the Lévy
metric ([1], chapter 2.3, exercise 2.15). We have thus shown that every subse-
quence of Fn has a further subsequence converging to F . Since the Lévy metric
is a metric, our lemma gives us that Fn ⇒ F .
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